解説:
二次関数の頂点を求める場合、二次関数の式を平方完成させると良い。
$$ \begin{eqnarray}
y &=& x^2-6x \\
y &=& x^2-6x+9-9 \\
y &=& (x^2-6x+9)-9 \\
y &=& (x-3)^2-9 \\
\end{eqnarray} $$
したがって、頂点の座標は、\( (3,-9) \)となる。
以上。
思い立った時から受験生。 一歩踏み出したあなたを応援します。
二次関数の頂点を求める場合、二次関数の式を平方完成させると良い。
$$ \begin{eqnarray}
y &=& x^2-6x \\
y &=& x^2-6x+9-9 \\
y &=& (x^2-6x+9)-9 \\
y &=& (x-3)^2-9 \\
\end{eqnarray} $$
したがって、頂点の座標は、\( (3,-9) \)となる。
以上。